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Abstract: We update the theory predictions for the mass difference ∆Ms, the width

difference ∆Γs and the CP asymmetry in flavour-specific decays, as
fs, for the Bs−Bs system.

In particular we present a new expression for the element Γs
12 of the decay matrix, which

enters the predictions of ∆Γs and as
fs. To this end we introduce a new operator basis, which

reduces the troublesome sizes of the 1/mb and αs corrections and diminishes the hadronic

uncertainty in ∆Γs/∆Ms considerably. Logarithms of the charm quark mass are summed

to all orders. We find ∆Γs/∆Ms = (49.7± 9.4) · 10−4 and ∆Γs = (fBs
/240MeV)2[(0.105±

0.016)B + (0.024±0.004) B̃′
S − 0.027±0.015] ps−1 in terms of the bag parameters B, B̃′

S in

the NDR scheme and the decay constant fBs
. The improved result for Γs

12 also permits the

extraction of the CP-violating Bs−Bs mixing phase from as
fs with better accuracy. We show

how the measurements of ∆Ms, ∆Γs, as
fs, Amix

CP (Bs → J/ψφ) and other observables can be

efficiently combined to constrain new physics. Applying our new formulae to data from

the DØ experiment, we find a 2σ deviation of the Bs−Bs mixing phase from its Standard

Model value. We also briefly update the theory predictions for the Bd−Bd system and

find ∆Γd/∆Md =
(
52.6

+11.5
−12.8

)
· 10−4 and ad

fs =
(
−4.8

+1.0
−1.2

)
· 10−4 in the Standard Model.
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1. Introduction

Flavour-changing neutral current (FCNC) processes are highly sensitive to new physics

around the TeV scale. Global fits to the unitarity triangle show an excellent agreement

of b → d and s → d transitions with the predictions of the Cabibbo-Kobayashi-Maskawa

(CKM) mechanism [1, 2]. Extensions of the Standard Model can contain sources of flavour-

changing transitions beyond the CKM matrix. Models without these new sources are

termed to respect minimal flavour violation (MFV). Despite of the success of the MFV

hypothesis in b → d and s → d transitions there is still sizable room for non-MFV contribu-

tion in b → s transitions. For instance, an extra contribution to b → sqq, q = u, d, s, decay

amplitudes with a CP phase different from arg(V ∗
tsVtb) can alleviate the ∼ 2.6σ discrepancy

between the measured mixing-induced CP asymmetries in these b → s penguin modes and

the Standard Model prediction [3]. Models of supersymmetric grand unification can natu-

rally accommodate new contributions to b → s transitions [4]: right-handed quarks reside

in the same quintuplets of SU(5) as left-handed neutrinos, so that the large atmospheric

neutrino mixing angle could well affect squark-gluino mediated b → s transitions [5].
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Clearly, Bs−Bs mixing plays a preeminent role in the search for new physics in b → s

FCNC’s. Bs−Bs oscillations are governed by a Schrödinger equation

i
d

dt

(
|Bs(t)〉
|B̄s(t)〉

)
=

(
M s − i

2
Γs

)(
|Bs(t)〉
|B̄s(t)〉

)
(1.1)

with the mass matrix M s and the decay matrix Γs. The physical eigenstates |BH〉 and

|BL〉 with the masses MH , ML and the decay rates ΓH , ΓL are obtained by diagonalizing

M s−iΓs/2. The Bs−Bs oscillations in eq. (1.1) involve the three physical quantities |M s
12|,

|Γs
12| and the CP phase φs = arg(−M s

12/Γ
s
12) (see e.g. [6]). The mass and width differences

between BL and BH are related to them as

∆Ms = M s
H − M s

L = 2 |M s
12|, ∆Γs = Γs

L − Γs
H = 2 |Γs

12| cos φs, (1.2)

up to numerically irrelevant corrections of order m2
b/M

2
W . ∆Ms simply equals the frequency

of the Bs−Bs oscillations. A third quantity providing independent information on the

mixing problem in eq. (1.1) is

as
fs = Im

Γs
12

M s
12

=
|Γs

12|
|M s

12|
sin φs =

∆Γs

∆Ms
tan φs. (1.3)

as
fs is the CP asymmetry in flavour-specific Bs → f decays, which means that the decays

Bs → f and Bs → f (with f denoting the CP-conjugate final state) are forbidden [7]. The

standard way to access as
fs uses Bs → Xsℓ

+νℓ decays, which justifies the name semileptonic

CP asymmetry for as
fs. (See e.g. [6, 8] for more details on the phenomenology of Bs−Bs

mixing.)

It is important to note that new physics can significantly affect M s
12, but not Γs

12,

which is dominated by the CKM-favoured b → ccs tree-level decays. Hence all possible

effects of new physics can be parameterised by two real parameters only, for instance |M s
12|

and φs. While |M s
12| is directly related to ∆Ms, the extraction of φs from either ∆Γs or

as
fs requires an accurate knowledge of Γs

12.

In the Standard Model M s
12 and Γs

12 are computed from the box diagrams in figure 1

and QCD corrections in the desired order.

The Standard Model prediction for M12 reads:

M12 =
G2

F MBs

12π2
M2

W (VtbV
∗
ts)

2 η̂B S0(xt) f2
Bs

B, (1.4)

where GF is the Fermi constant, the Vij ’s are CKM elements, MBs
and MW are the masses

of Bs meson and W boson and the short-distance information is contained in η̂B S0(xt):

S0(xt) is the Inami-Lim function, which depends on the top mass mt through xt = m2
t /M

2
W ,

and η̂B is a numerical factor containing the leading and next-to-leading QCD corrections [9].

The calculation of M12 involves the four-quark operator (α, β = 1, 2, 3 are colour indices):

Q = sαγµ(1 − γ5)bα sβγµ(1 − γ5)bβ . (1.5)

– 2 –
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Figure 1: In the lowest order M s
12 is calculated from the dispersive parts of the box diagrams on the

left. It is dominated by the top contribution. The result involves only one local |∆B| = 2 operator,

shown in the right picture. The leading contribution to Γs
12 is obtained from the absorptive parts of

the box diagrams on the left, to which only diagrams without top quark line contribute. To lowest

order in the heavy quark expansion two |∆B| = 2 operators occur, the Λ/mb corrections involve

five more.

All long-distance QCD effects are contained in the hadronic matrix element of Q and are

parameterised by f2
Bs

B:

〈Bs|Q|Bs〉 =
8

3
M2

Bs
f2

Bs
B. (1.6)

The recent observation of the Bs−Bs mixing frequency ∆Ms = 2|M s
12| at the Tevatron [10]

yields a powerful constraint on extensions of the Standard Model [11 – 14]. The results from

the DØ and CDF experiments obtained with 1 fb−1 of data, are [15]

17 ps−1 ≤ ∆Ms ≤ 21 ps−1 @90% CL DØ

∆Ms = 17.77 ± 0.10(syst) ± 0.07 (stat) ps−1 CDF. (1.7)

While the precise measurement in eq. (1.7) sharply determines |M s
12|, the uncertainty of

f2
Bs

B, which is around 30%, blurs the extraction of some new physics contribution adding

to S0(xt) in eq. (1.4). Alternatively one can study the ratio ∆Md/∆Ms, where ∆Md is

the mass difference in the Bd−Bd system. While the hadronic uncertainty in the ratio

f2
Bs

B/(f2
Bd

BBd
) is smaller, one is now dependent on |Vtd/Vts|2. Even if one assumes non-

standard contributions only in Bs physics, but not in the quantities entering the global fit

of the unitarity triangle, |Vtd/Vts|2 is only known to roughly 40% [2] leaving equally much

room for new physics in |M s
12|.

Adding experimental information from ∆Γs or as
fs helps in two ways; first, one can

study the CP-violating phase φs, which is totally unconstrained by ∆Ms, through eqs. (1.2)

and (1.3). Second, one expects cancellations of hadronic parameters in the ratio Γs
12/M

s
12,

which enters as
fs and ∆Γs/∆Ms. All decays into final states with zero strangeness con-

tribute to Γs
12, which is dominated by the CKM-favoured b → ccs tree-level contribution.

In the first step of the calculation the W-boson is integrated out and the W-mediated

|∆B| = 1 transitions are described by the usual effective |∆B| = 1 hamiltonian with the

current-current operators Q1, Q2 and the penguin operators Q3−6, Q8 [16]. The leading

– 3 –
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Figure 2: Leading-order CKM-favoured contribution to Γs
12, which arises from

( )

Bs decays to final

states (indicated by the dashed lines) with a (c, c) pair and zero strangeness. The crosses denote

any of the operators Q1−6 of the |∆B| = 1 hamiltonian. The Cabibbo-suppressed contributions

correspond to diagrams with one or both c quarks replaced by u quarks.

contribution to Γs
12 in this effective |∆B| = 1 theory is shown in figure 2. In the second

step one uses an operator product expansion (OPE), the Heavy Quark Expansion (HQE),

to express Γs
12 as an expansion in the two parameters Λ/mb and αs(mb). Here αs is the

QCD coupling constant and Λ is the appropriate hadronic scale, which quantifies the size

of the hadronic matrix elements. The HQE links the diagrams of figure 2 to the matrix

elements of local ∆B = 2 operators. In addition to the operator Q in eq. (1.5) one also

encounters

QS = sα(1 + γ5)bα sβ(1 + γ5)bβ , (1.8)

whose matrix element is parameterised by a bag parameter BS in analogy to eq. (1.6). The

leading contribution to Γs
12 was obtained in [7, 17]. Today Γs

12 is known to next-to-leading-

order (NLO) in both Λ/mb [18] and αs(mb) [19, 20]. The 1998 result [19]

(
∆Γs

Γs

)
=

(
fBs

210 MeV

)2

[0.006B + 0.150BS − 0.063] (1.9)

with the average total width Γs = (Γs
L +Γs

H)/2 is pathological in several respects: first, the

Λ/mb correction -0.063 is unnaturally large and amounts to around 40% of the total result.

Second, the coefficient of B cancels almost completely, the result is therefore dominated

by the term proportional to BS ∼ 0.9, so that the cancellation of hadronic quantities

from the ratio ∆Γs/∆Ms is very imperfect. Third, both the Λ/mb and αs corrections,

which diminish the coefficient of BS from 0.22 to 0.15, are negative, and these numerical

cancellations between leading-order (LO) order result and corrections increase the relative

uncertainty of the prediction for ∆Γs/Γs. In the following section we argue that these

pathologies are caused by a poor choice of the operator basis used in [18 – 20] and propose

a different basis. We also improve the prediction of ∆Γs/∆Ms and ∆Γs/Γs in several other

aspects, by summing logarithms of the charm mass to all orders in αs, by using different

renormalisation schemes for the b-quark mass, by including CKM-suppressed contributions

and by modifying the normalisation related to the factor 1/Γs in eq. (1.9). In section 3

we present numerical updates first of ∆Ms, ∆Γs and as
fs and then of the corresponding
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quantities in the Bd-system. In section 4 we show how the expressions for the mixing

quantities change in the presence of new physics. Here we discuss how to combine different

present and future measurements to constrain |M s
12| and φs and advocate a novel method to

display the constraints on possible new short-distance physics in Bs−Bs mixing. Section 5

gives a road map for future measurements and calculations and section 6 summarises our

results.

2. Improved prediction of Γ
s
12

We write Γs
12 as [21]

Γs
12 = −

[
λ2

c Γcc
12 + 2λc λu Γuc

12 + λ2
u Γuu

12

]
(2.1)

= −
[
λ2

t Γcc
12 + 2λt λu (Γcc

12 − Γuc
12) + λ2

u (Γcc
12 − 2Γuc

12 + Γuu
12 )

]
(2.2)

with the CKM factors λi = V ∗
isVib for i = u, c, t. In eq. (2.2) we have eliminated λc in favour

of λt using λu + λc + λt = 0 to prepare for the study of Γs
12/M

s
12. Since |λu| ≪ |λt| ≈ |λc|,

Γcc
12 clearly dominates Γs

12. For ab = cc, uc, uu we write [19, 21]

Γab
12 =

G2
F m2

b

24π MBs

[
Gab 〈Bs|Q|Bs〉 − Gab

S 〈Bs|QS |Bs〉
]

+ Γab
12,1/mb

(2.3)

The coefficients Gab and Gab
S are further decomposed as

Gab = F ab + P ab, Gab
S = −F ab

S − P ab
S . (2.4)

Here F ab and F ab
S are the contributions from the current-current operators Q1,2 while the

small coefficients P ab and P ab
S stem from the penguin operators Q3−6 and Q8. (Note that

in [19], where only the dominant Γcc
12 was considered, these coefficients had no superscript

’cc’.) Numerical cancellations render F cc small with |F cc/F cc
S | ≈ 0.03 which explains the

small coefficient of B in eq. (1.9).

We parameterise the matrix element of QS as

〈Bs|QS |Bs〉 = −5

3
M2

Bs
f2

Bs
B′

S . (2.5)

Formulae for physical quantities are more compact when expressed in terms of B′
S rather

than the conventionally used bag parameter BS . The two parameters are related as

B′
S =

M2
Bs

(mb + ms)2
BS . (2.6)

In the vacuum insertion approximation (VIA) the bag factors B and BS are equal to one.

Throughout this paper we use the MS scheme as defined in [19, 21] for all operators.

Therefore the masses mb and ms appearing in eq. (2.6) correspond to the MS scheme as

well.

Γcc
12,1/mb

comprises effects suppressed by Λ/mb. We will discuss it later, after trans-

forming to our new operator basis.

– 5 –
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2.1 New operator basis

When calculating Γ12 to leading order in Λ/mb, one first encounters a third operator Q̃S

in addition to Q and QS defined in eqs. (1.5) and (1.8):

Q̃S = sα(1 + γ5)bβ sβ(1 + γ5)bα, (2.7)

However, a certain linear combination of Q, QS and Q̃S is a 1/mb-suppressed operator [18].

This 1/mb-suppressed operator reads

R0 ≡ QS + α1Q̃S +
1

2
α2Q, (2.8)

where α1,2 contain NLO corrections, which are specific to the MS scheme used by us [19]:

α1 = 1 +
αs(µ2)

4π
Cf

(
12 ln

µ2

mb
+ 6

)
, α2 = 1 +

αs(µ2)

4π
Cf

(
6 ln

µ2

mb
+

13

2

)
. (2.9)

Here Cf = 4/3 is a colour factor and µ2 is the scale at which the operators in eq. (2.8) are

defined. The coefficients G and GS in eq. (2.3) depend on µ2 and this dependence cancels

with the µ2-dependence of 〈Bs|Q(µ2)|Bs〉 and 〈Bs|QS(µ2)|Bs〉. In lattice computations

the µ2-dependence enters in the lattice-continuum matching of these matrix elements. In

our numerics we will always quote the results for µ2 = mb. In [18 – 20] eq. (2.8) has been

used to eliminate QS in favour of R0 leading to the result in eq. (1.9). The matrix element

of Q̃S reads

〈Bs|Q̃S(µ2)|Bs〉 =
1

3
M2

Bs
f2

Bs
B̃′

S(µ2). (2.10)

In analogy to eq. (2.6) we define

B̃′
S(µ2) =

M2
Bs

(mb(µ2) + ms(µ2))2
B̃S(µ2). (2.11)

For clarity we have explicitly shown the µ2-dependence in eqs. (2.10) and (2.11), which was

skipped in eqs. (1.6), (2.5) and (2.6). In VIA B̃S = 1 and 〈Bs|Q̃S |Bs〉 is much smaller than

〈Bs|Q|Bs〉 and 〈Bs|QS |Bs〉. The small coefficient 1/3 in eq. (2.10) is the consequence of a

cancellation between the leading term in the 1/Nc expansion, where Nc = 3 is the number

of colours, and the factorisable 1/Nc corrections: 1/3 = 1 − 2/Nc. One naturally expects

that the bag factor B̃S substantially deviates from 1. However, a lattice computation

found B̃S = 0.91± 0.08 [22], showing that the matrix element of Q̃S is indeed small. Thus

〈Bs|R0|Bs〉 = Λ/mb implies a strong numerical relationship between B and BS which can

be used to constrain BS/B entering ∆Γs/∆Ms. Yet it is more straightforward to use

eq. (2.8) to eliminate QS altogether from Γ12 in favour of Q̃S . The coefficient of B will

change and and the coefficient of B̃′
S is expected to be small in view of the factor of 1/3 in

eq. (2.10). Using further the bag parameters of eqs. (1.6) and (2.5), Γab
12 of eq. (2.3) now

reads

Γab
12 =

G2
F m2

b

24π
MBs

f2
Bs

[(
Gab +

α2

2
Gab

S

) 8

3
B + Gab

S α1
1

3
B̃′

S

]
+ Γ̃ab

12,1/mb
. (2.12)

– 6 –
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The new 1/mb-corrections are related to Γab
12,1/mb

appearing in eq. (2.3) as

Γ̃ab
12,1/mb

= Γab
12,1/mb

+
G2

F m2
b

24π MBs

F
ab,(0)
S 〈Bs|R0|Bs〉. (2.13)

Here we have taken into account that the result of [19, 20] includes the Λ/mb terms without

penguin contributions and to LO in αs: consequently we have changed −Gab
S to F

ab,(0)
S ,

which is the LO approximation to F ab
S . Recalling |Gab| ≪ |Gab

S | and B, B̃′
S ≈ 1 one easily

verifies from eq. (2.12) that the first term proportional to B dominates over the second term.

Since Γab
12,1/mb

in eq. (1.9) is negative and the shift in eq. (2.13) adds a positive term our

change of basis also leads to |Γ̃ab
12,1/mb

| < |Γab
12,1/mb

|. Further the αs-corrections contained in

α1,2, which multiply G
ab,(0)
S in eq. (2.12), temper the large NLO corrections of the old result.

These three effects combine to reduce the hadronic uncertainty in ∆Γs/∆Ms substantially.

In other words: the uncertainty quoted in [19, 20] is not intrinsic to ∆Γs/∆Ms but an

artifact of a poorly chosen operator basis.

2.2 A closer look at 1/mb corrections

At order 1/mb one encounters the operators R0 of eq. (2.8),

R1 =
ms

mb
sα(1 + γ5)bα sβ(1 − γ5)bβ

R2 =
1

m2
b

sα
←−
Dργ

µ(1 − γ5)D
ρbα sβγµ(1 − γ5)bβ

R3 =
1

m2
b

sα
←−
Dρ(1 + γ5)D

ρbα sβ(1 + γ5)bβ (2.14)

and the operators R̃i which are obtained from the Ri’s by interchanging the colour indices

α and β of the two s fields [18]. At order 1/mb only five of these operators are independent

because of relations like R̃2 = −R2 + O(1/m2
b ). Writing (for ab = cc, uc, uu)

Γ̃ab
12,1/mb

=
G2

F m2
b

24πMBs


gab

0 〈Bs|R0|Bs〉 +
3∑

j=1

[
gab
j 〈Bs|Rj |Bs〉 + g̃ab

j 〈Bs|R̃j |Bs〉
]

 (2.15)

the coefficients gab
j and g̃ab

j read [18, 23, 21]:

gcc
0 =

√
1 − 4z(1 + 2z)C

(0) 2
2 + F

cc(0)
S =

√
1 − 4z(1 + 2z)C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]

gcc
1 = −2

√
1 − 4z(1 + 2z)C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
g̃cc
1 = −2

√
1 − 4z(1 + 2z)C

(0) 2
2

gcc
2 = −2

1 − 2z − 2z2

√
1 − 4z

C
(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
g̃cc
2 = −2

1 − 2z − 2z2

√
1 − 4z

C
(0) 2
2

gcc
3 = −24

z2

√
1 − 4z

C
(0)
1

[
3C

(0)
1 + 2C

(0)
2

]

g̃cc
3 = −24

z2

√
1 − 4z

C
(0) 2
2 (2.16)

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
7
2

guc
0 = (1 − z)2(1 + 2z)C

(0)2
2 + F

uc (0)
S = (1 − z)2, (1 + 2z)C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
(2.17)

guc
1 = −2(1 − z)2(1 + 2z)C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
g̃uc
1 = −2(1 − z)2(1 + 2z)C

(0) 2
2

guc
2 = −2(1 − z)(1 + z + z2)C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
g̃uc
2 = −2(1 − z)(1 + z + z2)C

(0)2
2

guc
3 = −12(1 − z), z2C

(0)
1

[
3C

(0)
1 + 2C

(0)
2

]
g̃uc
3 = −12(1 − z)z2C

(0)2
2 .

and guu
j = gcc

j (z = 0) = guc
j (z = 0). Here

z ≡ m2
c

m2
b

≡ [mc(mc)]
2

[mb(mb)]
2 (2.18)

and C
(0)
1 ∼ −0.3 and C

(0)
2 ∼ 1.1 are the LO Wilson coefficients of the ∆B = 1 operators

Q1 and Q2 [16].

The contributions involving R1, R̃1, R3 and R̃3 are suppressed by powers of ms/mb

or z2 and are numerically negligible. The only two important 1/mb operators are R0

and R̃2 = −R2 + O(1/m2
b ). As a consequence of the elimination of QS in favour of Q̃S

no term involving the large coefficient C
(0) 2
2 occurs in gab

0 . The contribution from R0 is

substantially diminished, and this can be understood in terms of a systematic expansion in

1/Nc: the coefficients gab
0 are colour-suppressed due to C1 ∼ 1/Nc, while they were colour-

favoured in the old basis. Since radiative corrections cannot change the colour counting,

this feature must persist in the yet uncalculated order αs/mb. In other words, by changing

to our new basis we have absorbed the corrections of order N0
c /mb into the leading order

of the 1/mb expansion. This improves our result over the one in the old basis by a term

of order Ncαs/mb. (Recall that αs ∼ 1/Nc, so that Ncαs/mb ∼ N0
c /mb.) This term

(which constitutes a parametrically enhanced correction) would appear, if the calculation

of αs/mb were done in the old basis. In fact, this term occurs in the NLO calculation

of [19 – 21] in the coefficient of Q̃S but is dropped once Q̃S is traded for R0, because all

αs/mb terms are consistently discarded. With the use of our new basis no corrections of

order Ncαs/mb to gab
0 can occur. This feature can also be understood by realising that the

large–Nc contribution to Γab
12 stems from the right diagram in figure 2 with two insertions

of Q2 plus additional planar graphs with extra gluons. These diagrams contribute to the

coefficients of Q and Q̃S, but not to the coefficient of QS . (This is easy to see, if one inserts

the two Q2’s in the Fierz-rearranged form.) Upon elimination of QS in favour of R0, the

color-suppressed coefficient gab of QS becomes the coefficient of R0. At order 1/mb one

has to include the momentum of the s quark in that diagram and finds a contribution to

the g̃ab
i ’s at order N0

c . These terms are identical in both bases. Our numerical analysis

in section 3 follows the pattern revealed by the 1/Nc expansion, finding the numerical

relevance of R0 drastically reduced compared to the old basis, so that the only remaining

important 1/mb operator is R̃2.

In the new basis the 1/mb corrections have their natural size of order Λ/mb ∼ 20%.

To be conservative, we have estimated the 1/m2
b terms to verify that this result is not

accidental. We have found two types of contributions: the first type is calculated by

expanding the results of figure 2 to the next order of the s-quark momentum, yielding
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operators with more derivatives acting on the s quark field. We find that these contributions

have the same suppression pattern as the gab
i ’s and g̃ab

i ’s. The second type of 1/m2
b operators

involve the QCD field strength tensor Gµν and has no counterparts at lower orders. We

find small coefficients here as well. Since the size of the 1/m2
b corrections is well below the

uncertainty which we obtain by varying the bag factors of the operators in eq. (2.14), there

is no reason to include these corrections into our numerical code.

We parameterise the matrix elements 〈Ri〉 ≡ 〈Bs|Ri|Bs〉’s as

〈R0〉 = −4

3

[
M2

Bs

mpow2
b (1 + ms/mb)

2
− 1

]
M2

Bs
f2

Bs
BR0, (2.19)

〈R1〉 =
7

3

ms

mb
M2

Bs
f2

Bs
BR1 , 〈R̃1〉 =

5

3

ms

mb
M2

Bs
f2

Bs
B eR1

,

〈R2〉 = −2

3

[
M2

Bs

mpow2
b

− 1

]
M2

Bs
f2

Bs
BR2 , 〈R̃2〉 =

2

3

[
M2

Bs

mpow2
b

− 1

]
M2

Bs
f2

Bs
B eR2

,

〈R3〉 =
7

6

[
M2

Bs

mpow2
b

− 1

]
M2

Bs
f2

Bs
BR3 , 〈R̃3〉 =

5

6

[
M2

Bs

mpow2
b

− 1

]
M2

Bs
f2

Bs
B eR3

.

As usual the bag parameters BR0 , . . . , B eR3
parameterise the deviation of the matrix ele-

ments from their VIA results derived in [18]. The numerical values of the 〈Ri〉’s depend

sensitively on the choice of the mass parameter mpow
b in eq. (2.19). Clearly, mpow

b is a

redundant parameter, as any change in mpow
b can be absorbed into the bag parameters. It

merely serves to calibrate the overall size of the 1/mb-suppressed matrix elements such that

the bag factors are close to 1. A future NLO calculation of the coefficients in eq. (2.17) will

allow us to replace mpow
b by a well-defined (i.e. properly infrared-subtracted) b pole mass.

Our numerical value for mpow
b is guided by the requirement that the terms in square brack-

ets in eq. (2.19) are of order 2Λ/mpow
b ∼ 0.2, which leads to the estimate mpow

b ≈ 4.8 GeV.

A better justification can be given by noting that the lattice computations of B, BS and

B̃S in [22] allow for an estimate of 〈R0〉 (which may become a determination, once the

lattice-continuum matching of 〈R0〉 is done at NLO):

BR0 =

[
α1

4
B̃′

S + α2B − 5

4
B′

S

] [
1 −

M2
Bs

mpow 2
b (1 + ms/mb)2

]−1

(2.20)

With the central values for B, BS and B̃S given in [22] and the choice mpow
b = 4.8 GeV

one finds BR0 = 1.1, while those of the new preliminary lattice computation of [24] imply

BR0 = 1.7. Our quoted numerical results in section 3 correspond to conservative ranges for

both mpow
b and the BRi

’s. We note that the only places where we use mpow
b are the matrix

elements in eq. (2.19); it is not used in the overall factor m2
b of Γ̃ab

12,1/mb
in eq. (2.15). This

is a change compared to the analysis in [21].

2.3 Summing terms of order αn

s
z lnn z

The coefficients Gab and Gab
S in eq. (1.5) depend on quark masses through z defined in

eq. (2.18). At order αn
s the dominant z-dependent terms are of the form αn

s z lnn z. In [25]
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and [21] it has been shown that these terms are summed to all orders n = 1, 2, . . ., if one

switches to a renormalisation scheme which uses

z ≡ [mc(mb)]
2

[mb(mb)]
2 . (2.21)

Since z is roughly half as big as z, this also reduces the dependence of the coefficients on

the charm mass. We illustrate the effect for Γcc
12 with a numerical example: In the two

renormalisation schemes one finds

Γcc
12 = (3.3 − 11.4 z + 1.5 z ln z) · 10−3 ps−1 + O

(
z2

)

Γcc
12 = (3.3 − 11.4 z) · 10−3 ps−1 + O

(
z2

)
. (2.22)

The numerical input is taken from eqs. (3.1)–(3.7) and eq. (3.8) below. From eq. (2.22) one

verifies that the use of z eliminates the z ln z term. This issue is particularly relevant for

as
fs and ad

fs, which are of order z. The final numbers for all quantities quoted below involve

z. We only revert to a scheme using z to compare with the previously published results

in [19, 20].

3. Numerical predictions

3.1 Input

For the numerical analysis we use the following set of input parameters: The quark masses

are [26]

mb(mb) = 4.22 ± 0.08GeV ⇒ mpole
b = 4.63 ± 0.09 GeV (3.1)

mpow
b = 4.8+0.0

−0.2 GeV

mc(mc) = 1.30 ± 0.05GeV ⇒ z =
m2

c(mc)

m2
b(mb)

= 0.095 ± 0.008 , (3.2)

⇒ z =
m2

c(mb)

m2
b(mb)

= 0.048 ± 0.004

ms(2GeV) = 0.10 ± 0.02GeV ⇒ ms(mb) = 0.085 ± 0.017GeV

mpole
t = 171.4 ± 2.1GeV ⇒ mt(mt) = 163.8 ± 2.0GeV (3.3)

We will need the meson masses [27]

MBd
= 5.279GeV , MBs

= 5.368GeV . (3.4)

The average width Γs of the Bs mass eigenstates is computed from the well-measured Bd

lifetime,

τBd
= 1.530 ± 0.009 ps , (3.5)

using Γs = 1/τBd
(1.00 ± 0.01). Our input of the CKM elements is [2]

|Vus| = 0.2248 ± 0.0016 , |Vcb| = (41.5 ± 1.0) · 10−3

∣∣∣∣
Vub

Vcb

∣∣∣∣ = 0.10 ± 0.02 , γ = 1.05+0.31
−0.12 . (3.6)
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For all predictions within the standard model we assume unitarity of the CKM matrix and

we determine all CKM elements from the four parameters |Vus|, |Vcb|, |Vub/Vcb| and γ. The

W mass [27] and the strong coupling constant are [28]

MW = 80.4GeV , αs(MZ) = 0.1189 ± 0.0010 . (3.7)

We note that in the Bs system CKM parameters other than |Vcb| (which basically deter-

mines |Vts|) play a minor role. The same is true for the strange quark mass in eq (3.3).

The dominant theoretical uncertainties, however, stem from the non-perturbative pa-

rameters discussed below and from the dependence on the unphysical renormalisation scale

µ1. We use the central values µ1 = µ2 = mb and we vary µ1 between mb/2 and 2mb. The

dependence on µ2 is related to the determination of the hadronic quantities and uncertain-

ties associated with µ2 are contained in the quoted ranges for these quantities.

The situation of the non-perturbative parameters - the decay constant and the bag pa-

rameters - is not yet settled. Different non-perturbative methods result in quite different

numerical results. QCD sum rule estimates were obtained for the decay constant fBs
[29],

for the bag parameter B [30, 31] and for BS [31]. The same quantities have been deter-

mined in quenched approximation in numerous lattice simulations, see [32] for a review.

The only determination of B̃S was done in a quenched lattice simulation in [22]. Un-

quenched (nf = 2) values are available for fBs
[33, 34], for B [34, 35] and for BS [35, 36].

For the decay constant fBs
even a lattice simulation with 2+1 dynamical fermions is avail-

able [37].

Unfortunately it turns out that the predictions for fBs
vary over a wide range, O(200 ±

20MeV) for quenched results, O(230± 20MeV) for nf = 2, O(245± 20MeV) for sum rule

estimates and O(260 ± 29MeV) for nf = 2 + 1, see e.g. [32]. This discrepancy has to be

resolved, since ∆M and ∆Γs depend quadratically on the decay constant! Recently the

combinations f2
Bs

B, f2
Bs

BS and f2
Bs

B̃S were determined for 2+1 light flavors [24]. The

authors of [24] claim that the combined determination results in a considerable reduction

of the theoretical error.

We will use in our numerics two sets of non-perturbative parameters:

Set I consists of a conservative estimate for fBs
combined with the unquenched determi-

nation for B [34] and BS [36] and the only published lattice determination of B̃S [22]:

fBs
= 240 ± 40MeV

B = 0.85 ± 0.06 ⇒ fBs

√
B = 0.221(46)GeV

BS = 0.86 ± 0.08 ⇒ B′
S = 1.34 ± 0.12 ⇒ fBs

√
B′

S = 0.277(57)GeV

B̃S = 0.91 ± 0.08 ⇒ B̃′
S = 1.41 ± 0.12 ⇒ fBs

√
B̃′

S = 0.285(60)GeV

(3.8)

Set II consists of the preliminary determination with 2+1 flavors [24]:

fBs

√
B = 0.227(17)GeV

fBs

√
B′

S = 0.295(22)GeV

fBs

√
B̃′

S = 0.305(23)GeV (3.9)
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The central values of both sets are quite similar, while the errors of set II are smaller by

almost a factor 3.

For both sets the bag parameters of the 1/mb-corrections are estimated within vacuum

insertion approximation and we use the following conservative error estimate

BRi
= 1 ± 0.5 . (3.10)

In our computer programs we carefully extract all terms of order α2
s and αs/mb, which

belong to yet uncalculated orders of the perturbation series, and discard them consistently.

3.2 ∆Ms within the SM

In the standard model expression (eq. (1.2) & eq. (1.4)) for the mass difference in the

Bs-system a product of perturbative corrections (η̂BS0) and non-perturbative corrections

(f2
Bs

B) arises. Using the above input the perturbative corrections are given by [9]

η̂B(µ = mb) = 0.837 (NDR), (3.11)

S0(xt) = S0

(
m2

t (mt)

M2
W

)
=

4xt − 11x2
t + x3

t

4(1 − xt)2
− 3x3

t ln(xt)

2(1 − xt)3
= 2.327 ± 0.044 (3.12)

Our final values for the standard model prediction

∆Ms = (19.30 ± 6.68) ps−1 (Set I) (3.13)

∆Ms = (20.31 ± 3.25) ps−1 (Set II) (3.14)

are bigger than the experimental result, but consistent within the errors. Using fBs
=

230 MeV and the bag parameter from set I, one exactly reproduces the experimental value

of ∆Ms.

The overall error is made up from the following components:

Input ∆Ms ∆Ms

Set I Set II

fBs
1+0.361
−0.306 −

B 1 ± 0.071 −
f2

Bs
B 1 ± 0.341 1 ± 0.150

Vcb 1+0.049
−0.048 1+0.049

−0.048

αs(MZ) 1 ± 0.020 1 ± 0.020

mt 1 ± 0.018 1 ± 0.018

γ 1+0.005
−0.015 1+0.005

−0.015

|Vub/Vcb| 1 ± 0.005 1 ± 0.005√∑
δ̄2 1 ± 0.346 1 ± 0.160

When combining different errors we first symmetrised the individual errors and added them

quadratically afterwards. The by far dominant contribution to the error comes from the

non-perturbative parameter f2
Bs

B. Clearly, in view of the precise measurement in eq. (1.7)

it is highly desirable to understand the hadronic QCD effects with a much higher precision

than today.
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3.3 ∆Γs, ∆Γs/∆Ms and as

fs
within the SM

The main result of this paper is a new, more precise determination of Γ12, which is then

used to determine ∆Γs, ∆Γs/∆Ms and as
fs.

In order to illustrate our progress, we first present the results in the old operator basis

used in [19, 20]. Using the scheme involving mpole
b and z as in [19, 20], but updating the

input parameters to our values in eqs. (3.1)–(3.7), we find

∆Γpole
s,old =

(
fBs

240MeV

)2 [
0.002B + 0.094B′

S

−
(
0.033BR̃2

+ 0.019BR0 + 0.005BR

)]
ps−1

∆Γpole,LO
s,old =

(
fBs

240MeV

)2 [
0.005B + 0.145B′

S

−
(
0.033BR̃2

+ 0.019BR0 + 0.005BR

)]
ps−1

apole,s
fs,old =

[
10.8 + 1.9

B′
S

B
+ 0.8

BR

B

]
Im

(
λu

λt

)
· 10−4

+

[
0.10 − 0.01

B′
S

B
+ 0.29

BR

B

]
Im

(
λu

λt

)2

· 10−4

(
∆Γs

∆Ms

)pole

old

=

[
0.9 + 40.9

B′
S

B
−

(
14.4

BR̃2

B
+ 8.5

BR0

B
+ 2.1

BR

B

)]
· 10−4 (3.15)

For simplicity we do not show the uncertainties of the numerical coefficients appearing in

the square brackets here and in following similar occasions. We assess these uncertainties,

however, when quoting final results.

Several comments are in order: in the old basis the coefficient of B in the prediction

of ∆Γs is negligible due to a cancellation among ∆B = 1 Wilson coefficients, thus the

term with B′
S dominates the overall result. This leads to the undesirable fact that the only

coefficient in ∆Γs/∆Ms that is free from non-perturbative uncertainties is numerically

negligible. Moreover in ∆Γs all 1/mb-corrections have the same size and add up to an

unexpectedly large correction (30% of the LO value, 45% of the NLO value). In eq. (3.15)

we have singled out the bag factors of the two most important sub-dominant operators

R̃2 and R0, while the bag parameters of the remaining operators are chosen equal and are

denoted by BR. Finally in the old operator basis the calculated NLO QCD corrections are

large and reduce the final number by about 35% of the LO value.

as
fs does not suffer from this shortcomings. Here the coefficient without non-perturbative

uncertainties is numerically dominant and the size of the 1/mb corrections seems to be

reasonable. Moreover in this case R3 and R̃3 are the dominant subleading operators. Since

the overall contribution of the 1/mb-corrections is relatively small, we choose all bag factors

of power suppressed operators equal to BR.

Using the non-perturbative parameters from set I we obtain the following number for ∆Γs:

∆Γs = (0.070 ± 0.042) ps−1 ⇒ ∆Γs

Γs
= ∆Γs · τBd

= 0.107 ± 0.065 (3.16)
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This number is in agreement with previous estimates [19, 38 – 40] where different input

parameters - in particular different values for the decay constant and the bag parameters -

were used. In the following table we quote the central values of these old predictions and in

addition give the corresponding results adjusted to the new non-perturbative parameters

of set I:

Reference predicted ∆Γs/Γs used fBs
used B′

S ∆Γs/Γs(fBs
= 240MeV,

B′
S = 1.34)

[19] 0.054 210 1.02 0.117

[38] 0.093 230 1.25 0.114

[39] 0.124 245 1.36 0.116

[40] 0.118 245 1.31 0.117

The values in the last column are still bigger than the new number in eq. (3.16) by about

8%. Besides some differences from other input parameters — like quark masses and CKM

parameters — this small overestimate in the last column originates from the use of dif-

ferent methods to determine Γs in the ratio ∆Γs/Γs compared to this work. Since now

very precise values of the b-lifetimes are available, we directly use them as an input to

determine the total decay rate: Γs = 1/τBd
. In [19, 38 – 40] we expressed the total decay

rate in terms of the semileptonic decay rate: Γs = Γtheory
sl /Bexp

sl . Doing so (with the 1998

value of Bexp
sl ) one obtains values for τB ≈ 1.66 ps, which are about 8% larger than the

experimental number of τBd
≈ 1.53 ps.

The Rome group [20] used a different normalisation, guided by the wish to eliminate the

huge uncertainty due to fBs
: ∆Γs/Γs = (∆Γs/∆Ms)

theory(∆Ms/∆Md)
theory∆M exp

d τBs
.

The values obtained by the Rome group for ∆Γs/Γs were typically considerably lower

than 0.10, which was partially due to different input parameters like the bottom mass.

Since now ∆Ms is known experimentally one can abbreviate their method to ∆Γs/Γs =

(∆Γs/∆Ms)
theory∆M exp

s τBs
. This prediction assumes that no new physics effects con-

tribute to the mass difference. This is numerically equivalent to the use of fBs
= 230 MeV

in our approach (see the passage below eq. (3.14)). With that input we obtain from our

analysis ∆Γs/Γs = 0.10 ± 0.06 which is in perfect agreement with the latest update of

the Rome group from this year [41]. Thus we see no discrepancy anymore between our

predictions and those of the Rome group.

However, our predictions have been criticised recently in [12]. The authors of [12]

obtain a much lower central value - ∆Γs/Γs = 0.067±0.027 - and claim that this difference

stems from their use of lattice values for the 1/mb-operators, while in our approach the

vacuum insertion approximation was used. Lattice values for the 1/mb corrections can be

extracted from [22] for the operators R0, R1 and R̃1, but their use does not resolve the

numerical discrepancy. With the help of one author of [12] we have traced the difference

back to the omission of the radiative corrections contained in α1 and α2, when eq. (2.20)

is used to extract 〈R0〉 from lattice data on 〈Q〉, 〈QS〉 and 〈Q̃S〉. This is numerically

equivalent to shifting BR0 from 1.1 to 1.7. If we use this number and fBs
= 230 MeV we

obtain ∆Γs/Γs = 0.079, which is closer to but still larger by 18% than the value obtained

in [12].
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Now we turn to the results in the new basis: For a direct comparison with the old

operator basis, we first show results for the scheme characterised by mpole
b and z:

∆Γpole
s =

(
fBs

240MeV

)2 [
0.095B + 0.023B̃′

S

−
(
0.033BR̃2

− 0.006BR0 + 0.005BR

)]
ps−1

∆Γpole,LO
s =

(
fBs

240MeV

)2 [
0.121B + 0.029B̃′

S

−
(
0.033BR̃2

− 0.006BR0 + 0.005BR

)]
ps−1

apole,s
fs =

[
12.9 + 0.5

B̃′
S

B
+ 1.7

BR

B

]
Im

(
λu

λt

)
· 10−4

+

[
0.20 + 0.02

B̃′
S

B
+ 0.44

BR

B

]
Im

(
λu

λt

)2

· 10−4 (3.17)

(
∆Γs

∆Ms

)pole

=

[
41.4 + 10.0

B̃′
S

B
−

(
14.4

BR̃2

B
− 2.6

BR0

B
+ 2.1

BR

B

)]
· 10−4 (3.18)

Now we are in the desired situation that ∆Γs is dominated by B and the lion’s share of

∆Γs/∆Ms can be determined without any hadronic uncertainty! Moreover the size of the

1/mb-corrections has become smaller, because the magnitude of the contribution from R0

is reduced by a factor of 3 (as anticipated from eqs. (2.16) and (2.17)) and the sign of this

contribution has changed. We are left with a 1/mb correction of 22% of the LO value or

28% of the NLO-value. Using the new operators the αs-corrections have become smaller

(22% of the LO value), too, and the unphysical µ1-dependence has shrunk. In the case of

as
fs = Im (Γs

12/M
s
12) the situation did not change much due to the change of the basis. Here

we have no strong recommendation on what basis to choose. However, in the presence of

new physics as
fs also involves Re (Γs

12/M
s
12) and the same improvements occur, as discussed

in section 4.

Using the non-perturbative parameters from set I we obtain the following number for ∆Γs:

∆Γs = (0.081 ± 0.036) ps−1 ⇒ ∆Γs

Γs
= ∆Γs · τBd

= 0.124 ± 0.056 (3.19)

The central value in the new basis is larger than the old one, while the theoretical errors

have shrunk considerably. The numerical difference stems from uncalculated corrections

of order αs/mb and α2
s. As a consistency check of our change of basis one can compare

the results in the old and the new basis neglecting all 1/mb and αs-corrections and setting

B = 1 = B′
S . As required we get in both cases the same result: ∆Γs/Γs = 0.1497.

For our final number we still go further. First we sum up logarithms of the form z ln z

by switching to schemes using z defined in eq. (2.21). Second we calculate our results for

two schemes of the b-quark mass, using either mb or mpole
b of eq. (3.1) and finally average
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over the schemes. By this we obtain the main result of this paper:

∆Γs =

(
fBs

240MeV

)2 [
(0.105 ± 0.016)B + (0.024 ± 0.004)B̃′

S

−
(
(0.030 ± 0.004)BR̃2

− (0.006 ± 0.001)BR0 + 0.003BR

)]
ps−1

as
fs =

[
(9.7 ± 1.6) + 0.3

B̃′
S

B
+ 0.3

BR

B

]
Im

(
λu

λt

)
· 10−4

+

[
(0.08 ± 0.01) + 0.02

B̃′
S

B
+ (0.05 ± 0.01)

BR

B

]
Im

(
λu

λt

)2

· 10−4 (3.20)

∆Γs

∆Ms
=

[
(46.2 ± 4.4) + (10.6 ± 1.0)

B̃′
S

B

−
(

(13.2 ± 1.3)
BR̃2

B
− (2.5 ± 0.2)

BR0

B
+ (1.2 ± 0.1)

BR

B

)]
· 10−4 (3.21)

Using the parameter set I, we obtain the following final numbers

∆Γs = (0.096 ± 0.039) ps−1 ⇒ ∆Γs

Γs
= ∆Γs · τBd

= 0.147 ± 0.060 (3.22)

as
fs = (2.06 ± 0.57) · 10−5 (3.23)

∆Γs

∆Ms
= (49.7 ± 9.4) · 10−4 (3.24)

φs = (4.2 ± 1.4) · 10−3 = 0.24◦ ± 0.08◦ (3.25)

The first striking feature of these numbers is the large increase for the prediction of ∆Γs

from 0.070 ps−1 to 0.096 ps−1 (about 37 %). The change of the basis is responsible for

an increase of about 16 %. We have shown that the previously used basis suffers from

several serious drawbacks — most importantly in the old basis strong cancellations, which

are absent in the new basis, occur. Next we have reduced an additional uncertainty by

summing up logarithms of the form z ln z to all orders. This theoretical improvement

results in another increase of about 11%. The averaging over the pole and MS schemes

results in an increase of about 7% compared to the exclusive use of the pole-scheme. Finally

we also include subleading CKM-structures (as done in [20, 21] as well) giving an increase

of ∆Γs by about 3% compared to setting Vub to zero. In the case of the flavour-specific

CP-asymmetry the choice of the new basis has no dramatic effect.

If one assumes that there is no new physics in the measured value of ∆Ms one can avoid

the large uncertainty due to fBs
by writing:

∆Γs =

(
∆Γs

∆Ms

)Theory

· ∆MExp.
s = 0.088 ± 0.017 ps−1 (3.26)

⇒ ∆Γs

Γs
= ∆Γs · τBd

= 0.127 ± 0.024 . (3.27)
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This smaller value is numerically equivalent to using fBs
= 230 MeV in eq. (3.20).

For completeness we also present the numbers with the parameter set II:

∆Γs = (0.106 ± 0.032) ps−1 ⇒ ∆Γs

Γs
= ∆Γs · τBd

= 0.162 ± 0.049 (3.28)

as
fs = (2.06 ± 0.57) · 10−5 (3.29)

∆Γs

∆Ms
= (51.9 ± 9.8) · 10−4 (3.30)

The above errors in ∆Γs and ∆Ms have to be taken with some care, since we were not

using our conservative error estimate but the preliminary values from [24].

In the following table the individual sources of uncertainties in ∆Γs — using the

parameter set I — are listed in detail:

Input ∆Γs ∆Γs ∆Γs

old, pole, z new, pole, z new, average, z

fBs
1+0.361
−0.306 1+0.361

−0.306 1+0.361
−0.306

B1 1 ± 0.002 1+0.070
−0.071 1 ± 0.066

B2,3 1 ± 0.167 1 ± 0.035 1 ± 0.031

BR̃2
1 ± 0.235 1 ± 0.203 1 ± 0.157

BR0 1 ± 0.140 1 ± 0.036 1 ± 0.030

µ1 with mb/2 ≤ µ1 ≤ 2mb 1+0.248
−0.521 1+0.111

−0.272 1+0.074
−0.200

Vcb 1+0.049
−0.048 1+0.049

−0.048 1 ± 0.049

z 1+0.044
−0.046 1+0.040

−0.042 1 ± 0.019

mb 1+0.043
−0.042 1+0.036

−0.035 1+0.010
−0.009

αs 1+0.014
−0.013 1 ± 0.003 1 ± 0.001

ms 1 ± 0.010 1 ± 0.012 1 ± 0.010

γ 1+0.005
−0.016 1+0.005

−0.015 1+0.005
−0.014

|Vub/Vcb| 1 ± 0.006 1 ± 0.006 1 ± 0.005√∑
δ̄2 1 ± 0.607 1 ± 0.450 1 ± 0.405

mpow
b 1−0.368 1−0.158 1−0.112

RS 1 ± 0.133 1 ± 0.065 1 ± 0.066

(3.31)

The same result is visualised in figure 3.

In the case of ∆Γs the by far largest uncertainty stems from the error on fBs
. Here a

considerable improvement from the non-perturbative side is mandatory. The dependence

on the decay constant is of course not affected by the change of the operator basis. The

second most important uncertainty comes from the 1/mb-operator R̃2. This operator has

up to now only been estimated in the naive vacuum insertion approximation. Any non-

perturbative investigation would be very helpful. Number three in the error hit list is

the unphysical µ1-dependence. Using the old operator basis the corresponding error was

huge, it was drastically reduced by changing to the new basis and by including also the

MS-scheme for the b-quark mass. Any further improvement requires a cumbersome NNLO

calculation, which might be worthwhile if progress on the non-perturbative side for fBs
and
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R̃2 is achieved. Number four is again a non-perturbative parameter - now the bag param-

eter of the operator Q. In the old operator basis the corresponding uncertainty stemmed

from BS and was larger by a factor of 2.5. The dependence on Vcb results in a relative

error of about 5% for both the old basis and the new basis. All remaining uncertainties

are at most 3%.

Using our conservative estimates and adding all errors quadratically (after symmetrising

them) we arrive at a reduction of the overall theoretical error due to the introduction of

the new basis from ±61% to ±41%, where the last number is completely dominated by the

decay constant. If one neglects the dependence on fBs
the overall theoretical error goes

down from ±51% to ±23%.

In the table in eq. (3.31) we also show the dependence on the b-quark mass we are using

in the 1/mb-corrections, mpow
b . This dependence can be viewed as a measure of the overall

size of the 1/mb-corrections. The use of the new basis results in a strong reduction of the

corresponding uncertainty, from 37% to 11%. And finally we compare the two renormal-

isation schemes (RS) we are using for the b-quark mass. Here we have again muss less

uncertainty in the new operator basis. To avoid a double counting of the errors we did not

include the last two rows of table (3.31) in the total error.

Investigating the case of ∆Γs/∆Ms the improvement due to our new basis is more sub-

stantial, since here the dependence on fBs
cancels:

Input ∆Γs/∆Ms ∆Γs/∆Ms as
fs

old, pole, z new, average, z new, average, z

B1 1+0.074
−0.064 1 ± 0.005 1+0.006

−0.005

B2,3 1 ± 0.167 1 ± 0.031 1 ± 0.004

BR̃2
1 ± 0.235 1 ± 0.157 1 ± 0.025(R̃3)

BR0 1 ± 0.140 1 ± 0.030 1 ± 0.011(R3)

µ1 with mb/2 ≤ µ1 ≤ 2mb 1+0.194
−0.495 1+0.027

−0.154 1+0.152
−0.101

Vcb 1 ± 0.000 1 ± 0.000 1 ± 0.000

z 1+0.044
−0.046 1 ± 0.019 1+0.094

−0.092

mb 1+0.043
−0.042 1+0.010

−0.009 1+0.037
−0.036

mt 1 ± 0.018 1 ± 0.018 1 ± 0.018

αs 1 ± 0.012 1 ± 0.001 1 ± 0.007

ms 1 ± 0.010 1 ± 0.010 1 ± 0.001

γ 1+0.001
−0.003 1+0.000

−0.001 1+0.144
−0.081

|Vub/Vcb| 1 ± 0.001 1 ± 0.001 1+0.194
−0.196√∑

δ̄2 1 ± 0.480 1 ± 0.189 1 ± 0.279

mpow
b 1−0.368 1−0.112 1+0.016

RS 1 ± 0.136 1 ± 0.069 1 ± 0.004

In the case of ∆Γs/∆Ms the use of the new operator basis leads to a reduction of the

total error from 48% to 19%! The dominant error is now due to the bag parameter BR̃2
,

followed by the µ1-dependence. The remaining uncertainties are at most 3%. In the case of

as
fs the situation is quite different. Here the dominant uncertainty stems from Vub, followed
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Figure 3: Uncertainty budget for the theory prediction of ∆Γs. The largest uncertainties stem

from fBs
, the renormalisation scale µ1 of the ∆B = 1 operators and the bag parameter of the 1/mb-

suppressed operator R̃2. The transparent segment of the right pie chart shows the improvement

with respect to the old result on the left.

by the dependences on µ1, γ and z. Moreover the 1/mb-corrections play a minor role here

— as can be read off from the error due to the variation of mpow
b .

3.4 ∆Md, ∆Γd and ad

fs
within the SM

Here we give updated numbers for the mixing parameters of the Bd system. The CKM

elements governing Bd−Bd mixing appear in the combinations λd
i = V ∗

idVib for i = u, c, t.

The bag parameters multiplying fBd
below refer to Bd mesons and are different from those

in the Bs system. However, no non-perturbative computation has shown any numerically

relevant deviation of BBd
/BBs

from 1.

Updating ∆Md to mt(mt) = 163.8 ± 2.0GeV gives

∆Md = (0.53 ± 0.02) ps−1

( |Vtd|
0.0082

)2 (
fBd

200MeV

)2 B

0.85
.

While in the Bs system the values of γ and |Vub| in eq. (3.6) play a minor role, their
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Figure 4: Uncertainty budget for ∆Γs/∆Ms. See figure 3 for explanations. The ratio ∆Γs/∆Ms

does not depend on fBs
and the progress due to the new operator basis is more substantial than in

∆Γs.

uncertainties are an issue for ∆Γd and ad
fs. The master formulae are [21]

∆Γd

∆Md
= − 10−4

[
c + aRe

λd
u

λd
t

+ bRe
λd 2

u

λd 2
t

]
(3.32)

ad
fs = 10−4

[
a Im

λd
u

λd
t

+ b Im
λd 2

u

λd 2
t

]
. (3.33)

The coefficients

a = 2 · 104 Γuc
12 − Γcc

12

Md
12/λ

d 2
t

, b = 104 2Γuc
12 − Γcc

12 − Γuu
12

Md
12/λ

d 2
t

and c = −104 Γcc
12

Md
12/λ

d 2
t

(3.34)

are independent of CKM elements because of Md
12 ∝ λd 2

t . In our new operator basis these

coefficients read

a = 9.68
+1.53
−1.48 +

(
0.31

+0.09
−0.07

) B̃′
S

B
+

(
0.27

+0.15
−0.06

) BR

B

b = 0.08 ± 0.03 + (0.02 ± 0.01)
B̃′

S

B
+

(
0.04

+0.03
−0.01

) BR

B

c = −46.1 ± 6.6 − (10.5 ± 1.3)
B̃′

S

B
+

(
8.7

+4.9
−1.0

) BR

B
.
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With the hadronic parameters of Set I in eq. (3.8) one finds

a = 10.5
+1.8
−1.7, b = 0.2 ± 0.1, c = −53.3

+12.7
−11.4 (3.35)

It is convenient to express λd
u/λd

t in eqs. (3.32) and (3.33) in terms of the angle β =

arg(−λd
t /λ

d
c) of the unitarity triangle and the length Rt = |λd

t /λ
d
c | of the adjacent side [21]:

Re
λd

u

λd
t

=
cos β

Rt
− 1, Re

λd 2
u

λd 2
t

=
cos(2β)

R2
t

− 2
cos β

Rt
+ 1,

Im
λd

u

λd
t

= −sin β

Rt
, Im

λd 2
u

λd 2
t

= −sin(2β)

R2
t

+ 2
sin β

Rt
. (3.36)

Clearly the terms involving λd 2
u /λd 2

t in eqs. (3.32) and (3.33) are numerically irrelevant in

view of the smallness of b. Moreover, in the preferred region of the Standard Model fit of

the unitarity triangle one has cosβ ≈ Rt, so that Re λd
u/λd

t is suppressed. Setting a and

b to zero in eq. (3.32) reproduces ∆Γd/∆Md within 2% [21] and ∆Γd/∆Md is essentially

free of CKM uncertainties.

Inserting eqs. (3.35) and (3.36) into eqs. (3.32) and (3.33) yields

∆Γd

∆Md
=

[
53.3

+11.4
−12.7 +

(
10.3

+1.8
−1.7

) (
1 − cos(β)

Rt

)

+(0.2 ± 0.1)

(
cos(β)

Rt
− cos(2β)

R2
t

)]
· 10−4 (3.37)

ad
fs = −

[(
10.1

+1.8
−1.7

) sinβ

Rt
+ (0.2 ± 0.1)

sin(2β)

R2
t

]
· 10−4 (3.38)

Next we insert the numerical values for β and Rt from [2]. Since we are interested in testing

the hypothesis of new physics in Bs−Bs mixing, we take values for β and Rt obtained prior

to the measurement of ∆Ms. With β = 23◦ ± 2◦ and Rt = 0.86 ± 0.11, which correspond

to a CL of 2σ, one finds

∆Γd

∆Md
=

(
52.6

+11.5
−12.8

)
· 10−4, ad

fs =
(
−4.8

+1.0
−1.2

)
· 10−4. (3.39)

Thus these predictions allow for new physics in ∆Ms, but assume that all other quantities

entering the standard fit of the unitarity triangle in [2] are as in the Standard Model. Using

∆M exp
d = 0.507 ± 0.004 ps−1 and τ exp

Bd
= 1.530 ± 0.009 we find from eq. (3.39):

∆Γd =
∆Γd

∆Md
∆M exp

d =
(
26.7

+5.8
−6.5

)
· 10−4ps−1,

∆Γd

Γd
=

(
40.9

+8.9
−9.9

)
· 10−4. (3.40)

The result in eq. (3.40) is consistent with our prediction in [21], but the central value is

substantially higher. This is not solely caused by our new operator basis, but also by the

use of a different renormalisation scheme. In both [21] and this work we average over two

schemes, but in one of the schemes used in [21] the z ln z terms are not summed to all

orders. Note that the quoted error of ad
fs in [21] corresponds to the 1σ ranges of β and Rt,

while in eq. (3.39) more conservative 2σ intervals have been used. The ranges in eq. (3.39)

imply for the CP-violating phase φd = arg(−Md
12/Γ

d
12):

φd = −0.091
+0.026
−0.038 = −5.2◦

+1.5◦

−2.1◦ . (3.41)
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4. Constraining new physics with Bs−Bs mixing

In this section we investigate effects of new physics contributions to the Bs-mixing param-

eters. New physics can change the magnitude and the phase of M s
12. We parameterise its

effect (similarly to [42, 2]) by

M s
12 ≡ MSM,s

12 · ∆s , ∆s ≡ |∆s|eiφ∆
s . (4.1)

The relationship to the parameters used in [14, 2] is

∆s = r2
se

2iθs .

We find it more transparent to plot Im ∆s vs. Re∆s than to plot 2θs vs. r2
s . Our plots

are similar to figure 1 of [14], which displays sin(2θs) vs. cos(2θs), but also include the

information on |∆s| ≡ r2
s . Finally Γs

12 stems from CKM-favoured tree decays and one can

safely set Γs
12 = ΓSM,s

12 .

4.1 ∆Γs, ∆Γs/∆Ms and as
fs beyond the SM

One easily finds:

∆Ms = ∆MSM
s |∆s|

= (19.30 ± 6.74) ps−1 · |∆s| (4.2)

∆Γs = 2|Γs
12| cos

(
φSM

s + φ∆
s

)

= (0.096 ± 0.039) ps−1 · cos
(
φSM

s + φ∆
s

)
(4.3)

∆Γs

∆Ms
=

|Γs
12|

|MSM,s
12 |

· cos
(
φSM

s + φ∆
s

)

|∆s|

= (4.97 ± 0.94) · 10−3 · cos
(
φSM

s + φ∆
s

)

|∆s|
(4.4)

as
fs =

|Γs
12|

|MSM,s
12 |

· sin
(
φSM

s + φ∆
s

)

|∆s|

= (4.97 ± 0.94) · 10−3 · sin
(
φSM

s + φ∆
s

)

|∆s|
(4.5)

with (cf. eq. (3.25)) φSM
s = (4.2 ± 1.4) · 10−3. (4.6)

Here the numerical values correspond to our results from parameter set I in eqs. (3.22)–

(3.25). In the case of as
fs there is a major difference to the SM case of section 3.3, which only

involves Im (Γs
12/M

s
12): in the presence of new physics as

fs is dominated by Re (Γs
12/M

s
12) as

long as |φ∆
s | > φSM

s . Thus the prediction in eq. (4.5) profits from the improvements due

to our new operator basis — just as the prediction of ∆Γs in eq. (4.4). From eq. (4.5) one

also verifies the enormous sensitivity of as
fs to new physics, since it exceeds its SM value by

a factor of 250 for φ∆
s = π/2. We have plotted as

fs vs. φ∆
s for the old and the new bases in

figure 5.
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Figure 5: as
fs as a function of the new phase φ∆

s from eq. (4.5) for the range −π ≤ φ∆
s ≤ π.

The thick blue lines show the prediction in the new basis, while thin red lines correspond to the

old operator basis. The solid lines display the central values of our predictions and the dashed

lines show the uncertainties, which are much larger for the old result. The standard model value

as
fs(φ

∆
s = 0) = 2.1 · 10−5 is too close to zero to be visible in the plot.

4.2 Basic observables

In this section we summarise the observables which constrain |∆s| and φ∆
s . These con-

straints are illustrated in figure 6 for hypothetical measurements.

1. The mass difference ∆Ms determines |∆s| through eq. (4.2). The accuracy of |∆s|
extracted from ∆Ms is limited by the precision of a lattice computation. This is not the

case for the other quantities discussed in this section.

Alternatively one can confront the experimental ratio ∆Md/∆Ms with theory. This has

the advantage that the ratio of the hadronic matrix elements involved can be predicted with

a smaller error, of order 5%. However, then the parameter of Rt of the unitarity triangle

entering ∆Md must be taken from measurements which are insensitive to new physics (or

at least insensitive to new physics in Bs−Bs mixing), e.g. through determinations of the

CKM angle γ from tree-level B decays (cf. the discussion after eq. (3.38)). At present this

method leads to comparable uncertainties in the extracted |∆s| as the direct determination

from ∆Ms. (Further flavour-blind new physics cancels from ∆Md/∆Ms.) In the following

analyses we do not use ∆Md/∆Ms.

2. The lifetime measurement in an untagged b → ccs decay
( )

Bs → fCP , where fCP is a

CP eigenstate, determines ∆Γs cos(φ∆
s − 2βs) = |∆Γs cos(φ∆

s − 2βs)| [43, 44]. Consider a
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CP-even final state fCP+ like D+
s D−

s . The time-dependent decay rate reads

Γ[
( )

Bs → fCP+, t] ∝ 1 + cos(φ∆
s − 2βs)

2
e−ΓLt +

1 − cos(φ∆
s − 2βs)

2
e−ΓH t

= e−Γst

[
cosh

∆Γs t

2
− cos(φ∆

s − 2βs) sinh
∆Γs t

2

]
(4.7)

and the (time-independent) overall normalisation is related to the branching fraction [44].

Here

βs = − arg

(
−λs

t

λs
c

)
= 0.020 ± 0.005 = 1.1◦ ± 0.3◦. (4.8)

That is, −βs is the analogue of the angle β of the unitarity triangle, which governs the

mixing-induced CP asymmetry in Bd → J/ψKS , in the Bs system. For βs different sign

conventions are used in the literature, we chose the one of [6] which satisfies βs > 0.

For example within the Standard Model (and neglecting the tiny βs) the lifetime

measured in
( )

Bs → D+
s D−

s equals Γs
L = Γs + ∆Γ/2, because only the short-lived CP-even

mass eigenstate BL can decay into D+
s D−

s . By using the theory relation 1/τBd
= Γd =

(1.00 ± 0.01)Γs one then finds ∆Γs. For φ∆
s 6= 0, however, the mass eigenstates are no

more CP eigenstates and both of them can decay to a CP eigenstate, as can be easily

verified from eq. (4.7). From Γ[
( )

Bs → fCP+, t] one can extract |Γs|, |∆Γs|, | cos(φ∆
s )| and

the overall normalisation, if the statistics is high enough to separate the two exponentials.

If the measured Γ[
( )

Bs → fCP+, t] is fitted to a single exponential exp[−Γf t], the measured

rate is [45, 44]

Γf =
(1 + cos(φ∆

s − 2βs))/ΓL + (1 − cos(φ∆
s − 2βs))/ΓH

(1 + cos(φ∆
s − 2βs))/Γ

2
L + (1 − cos(φ∆

s − 2βs))/Γ
2
H

(4.9)

= Γs + ∆Γs cos(φ∆
s − 2βs) + O

(
(∆Γs)

2

Γs

)

= Γs + 2 |Γs
12| cos(φ∆

s + φSM
s ) cos(φ∆

s − 2βs) + O
(

(∆Γs)
2

Γs

)
. (4.10)

For a CP-odd final state one has to interchange ΓL and ΓH in eqs. (4.7) and (4.9) and to

flip the sign of cos(φ∆
s − 2βs) in eqs. (4.7) and (4.10). From eq. (4.10) it is clear that the

lifetime measurement determines [43, 44]

∆Γs cos(φ∆
s ) = 2|Γs

12| cos2(φ∆
s ),

if the small phases φSM
s and βs are neglected. Thus one can find | cos φ∆

s |, which determines

φ∆
s with a four-fold ambiguity.1 We stress that (since sign ∆Γs = sign cos(φ∆

s )) the lifetime

method gives no information on the sign of ∆Γs and experimental results should be quoted

for |∆Γs| rather than ∆Γs.

eq. (4.9) assumes that detection efficiencies are constant over the decay time. Since this

is not the case in real experiments, we strongly recommend to perform a three-parameter

1If one keeps φSM
s and βs non-zero, one solution for φ∆

s is related to the other three by φ∆
s → φ∆

s + π,

φ∆
s → 2βs − φSM

s − φ∆
s and φ∆

s → 2βs − φSM
s − φ∆

s + π.
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fit to 2|Γ12|, | cos(φ∆
s )| and the overall normalisation (with |Γs| fixed to |Γd|(1.00 ± 0.01))

to eq. (4.7).

With the advent of the precise measurement of ∆Ms [10] one will rather exploit

|∆Γs|/∆Ms to constrain ∆s than |∆Γs| itself, which suffers from much larger hadronic

uncertainties. From eq. (4.4) one infers that |∆Γs|/∆Ms defines two circles in the complex

∆s plane which touch the y-axis at the origin.

3. The angular analysis of an untagged b → ccs decay
( )

Bs → V V ′, where V V ′ is a super-

position of CP eigenstates with vector mesons V, V ′, not only determines ∆Γs cos(φ∆
s −2βs),

but also contains information on sin(φ∆
s − 2βs) through a CP-odd interference term. Here

the golden mode is certainly
( )

Bs → J/ψφ, but also final states with higher ψ resonances

and
( )

Bs → D∗+
s D∗−

s can be studied. The determination of φ∆
s from the CP-odd interference

term in untagged samples involves a four-fold ambiguity. It could be reduced to a two-fold

ambiguity if the signs of cos δ1 and cos δ2 were determined, where δ1 and δ2 are the strong

phases involved [46, 44]. These two solution are related by φ∆
s ↔ φ∆

s ±π. If one relaxes the

assumptions on cos δ1 and cos δ2, one is back to the same four-fold ambiguity as in item 2.

4. The branching fraction Br(
( )

Bs → D
(∗)+
s D

(∗)−
s ) approximates the width difference

∆ΓCP between the two CP eigenstates of the Bs system [44]. Irrespective of any new

physics in M s
12 one always has ∆ΓCP = 2|Γs

12|, so no constraint on our new physics param-

eter ∆s is gained. Yet the ratio of ∆Γs cos(φ∆
s − 2βs) and ∆ΓCP could cleanly determine

cos(φ∆
s ) cos(φ∆

s − 2βs). However, Br(
( )

Bs → D
(∗)+
s D

(∗)−
s ) only equals ∆ΓCP in the poorly

tested simultaneous limit of an infinitely heavy charm quark with small-velocity [47] and an

infinite number of colours [48]. In order to test this limit one needs to measure the CP-odd

and CP-even fractions of all b → ccs decays [44]. Until this has been done nothing can

be inferred from Br(
( )

Bs → D
(∗)+
s D

(∗)−
s ), in particular this quantity neither gives an upper

bound (since other CP-even b → ccs modes can be relevant) nor a lower bound (since other

CP-odd b → ccs modes can be relevant and the D
(∗)+
s D

(∗)−
s final state has a CP-odd com-

ponent) on ∆ΓCP. We strongly discourage from the inclusion of Br(
( )

Bs → D
(∗)+
s D

(∗)−
s ) in

averages with ∆Γs determined from clean methods.

5. as
fs can be measured from untagged flavour-specific

( )

Bs decays, typically from the

number of positively and negatively charged leptons in semileptonic decays. Observing

further the time evolution of these untagged
( )

Bs → X∓ℓ±
( )
νℓ decays (see e.g. [8]),

Γ[
( )

Bs → X−ℓ+νℓ, t] − Γ[
( )

Bs → X+ℓ−νℓ, t]

Γ[
( )

Bs → X−ℓ+νℓ, t] + Γ[
( )

Bs → X+ℓ−νℓ, t]
=

as
fs

2

[
1 − cos(∆Ms t)

cosh (∆Γs t/2)

]
, (4.11)

will have two advantages: one can use the oscillatory behaviour to control fake effects from

experimental detection asymmetries (which are constant in time) and to separate the Bs

and Bd samples through ∆Ms 6= ∆Md. The constraint from as
fs on ∆s is given in eq. (4.5).

It defines a circle in the complex ∆s plane which touches the x-axis at the origin. The

constraint from as
fs on ∆s only has a two-fold ambiguity (related to φs ↔ π − φs) and

discriminates between the solutions in the upper and lower half-plane in figure 6.
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6. The time dependence of the tagged decay Bs → J/ψφ permits the determination of the

mixing-induced CP asymmetries Amix
CP (Bs → (J/ψφ)CP±). The angular analysis separates

the CP-odd P-wave component from the CP-even S-wave and D-wave. The time-dependent

CP asymmetry is (in the notation of [6, 44]):

Γ(B̄0
s (t) → f) − Γ(B0

s (t) → f)

Γ(B̄0
s (t) → f) + Γ(B0

s (t) → f)
= − Amix

CP sin(∆Mst)

cosh(∆Γst/2) + A∆Γ sinh(∆Γst/2)
. (4.12)

One finds φ∆
s − 2βs through

Amix
CP (Bs → (J/ψφ)CP±) = ± sin(φ∆

s − 2βs), A∆Γ = ∓ cos(φ∆
s − 2βs) (4.13)

with the same two-fold ambiguity as from as
fs in item 5. Combining eqs. (4.2) and (4.5) with

eq. (4.13) and neglecting the tiny contributions of φSM
s and βs one verifies the correlation

between as
fs and Amix

CP (Bs → (J/ψφ)CP±) derived in [12, 13]. In fact such correlations can

be found between any three of the observables discussed above, because the Bs−Bs mixing

only involves the two parameters |∆s| and φs.

An important remark here concerns the decay Bs → K+K−, as one might be tempted

to use the lifetime measured in Bs → K+K− to determine Γs + |∆Γs/2|. While K+K− is

CP even, the decay is penguin-dominated and as such sensitive to the same kind of new

physics which may be responsible for the experimental anomaly seen in penguin-dominated

Bd decays [3]. Thus information from Bs → K+K− should under no circumstances be

included in any averages with the measurements discussed above. Instead one should

confront the lifetime measured in this mode with the one obtained from Bs → (J/ψφ)CP+

to probe new physics in b → s penguin decays.

For a visualisation of the bounds from eqs. (4.2)–(4.5) in the complex ∆s-plane we

consider now the hypothetical case of |∆s| = 0.9 and φ∆
s = −π/4. Suppose one would

measure these central values:

∆Ms = 17.4 ps−1, ∆Γs = 0.068 ps−1, (4.14)

∆Γs

∆Ms
= 3.91 · 10−3, as

fs = −3.89 · 10−3 . (4.15)

Moreover we assume the following theoretical and experimental uncertainties: ∆Ms :

±15%, ∆φs : ±20%, ∆Γs/∆Ms : ±15%, as
fs : ±20%. The regions in the ∆s-plane bounded

for these hypothetical measurements are shown in figure 6.

The constraints from CP-conserving quantities are symmetric to the Im(∆s)-axis, The

bound from ∆Ms simply gives a circle with the origin (0,0) and the radius |∆s|. In the

measurement of ∆Γs we have assumed that the data are fitted to the correct formula

eq. (4.7) and |∆Γs| and | cos(φs − 2βs)| have been determined as discussed above in item

2. In practice the extracted |∆Γs| and | cos(φ∆
s − 2βs)| are strongly correlated and mainly

|∆Γs|| cos(φ∆
s − 2βs)| is determined (see eq. (4.10) and [44]). The constraint from the

hadronically cleaner ratio |∆Γs|/∆Ms are two circles which touch the y-axis in the origin.

If one fully includes the correlation between |∆Γs| and | cos(φ∆
s − 2βs)| one will rather

find constraints which roughly correspond to a fixed |∆Γs cos(φ∆
s − 2βs)|/∆Ms. The cor-

responding curves are a bit more eccentric than the circles from |∆Γs|/∆Ms.
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Figure 6: Illustration of the bounds in the complex ∆s-plane for |∆s| = 0.9 and φ∆
s = −π/4. We

assume the following overall uncertainties: ∆Ms (red or dark-grey): ±15%, ∆Γs/∆Ms (yellow or

light-grey): ±15%, as
fs (light-blue or grey): ±20% and φ∆

s (solid lines): ±20%.

If one plots the bounds from |∆Γs| (or |∆Γs cos(φ∆
s − 2βs)|) alone, one finds four rays

starting from the origin. The experimental information in this is redundant, as it is fully

contained in the constraints from ∆Ms and |∆Γs|/∆Ms. For the theory uncertainties,

however, this is not true: if (as current data do) ∆Ms prefers a small value of fBs
, while

∆Γs prefers a large fBs
, the combined constraint from ∆Ms and |∆Γs| will exclude a region

of the ∆s plane which is allowed by the ratio |∆Γs|/∆Ms, from which fBs
drops out.

The measurement of as
fs yields a circle touching the x-axis in the origin, in particular

it reduces the four-fold ambiguity in the extracted value of ∆s to a two-fold one. The

extraction of φ∆
s −2βs from the angular analysis in

( )

Bs → J/ψφ (as discussed in item 3) also

yields four rays starting from the origin (corresponding to the same value of | cos(φ∆
s −2βs)|),

if no assumptions on the signs of cos δ1 and cos δ2 are made. Finally, the measurement of

Amix
CP (Bs → (J/ψφ)CP±) will select two out of these four rays, discriminating between

φ∆
s − 2βs > 0 and φ∆

s − 2βs < 0.

4.3 Current experimental constraints on ∆s

In this section we turn to the real world and discuss the current experimental constraints

on the complex ∆s-plane. In view of the experimental errors we set βs to zero and identify

φs with φ∆
s .

The mass difference ∆Ms is now known very precisely [10], see eq. (1.7). For the

remaining mixing parameters in the Bs-system only weak experimental constraints are

available. The only available experimental analysis of |∆Γs| with the correct implemen-

tation of the phase φs is from the DØ collaboration, their analysis in [49] was recently
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updated in [50] using 1fb−1 of data. Setting the value of the mixing phase φs to zero

(Standard Model scenario) they obtain [50]

∆Γs = 0.12 ± 0.08(stat)
+0.03
−0.04 (syst) ps−1 . (4.16)

Allowing for a non-zero value of the mixing phase φs they get

∆Γs = 0.17 ± 0.09(stat) ± 0.03(syst) ps−1

and φs = −0.79 ± 0.56(stat) ± 0.01(syst) (4.17)

or ∆Γs = −0.17 ± 0.09(stat) ± 0.03(syst) ps−1

and φs = −0.79 ± 0.56(stat) ± 0.01(syst) + π . (4.18)

As expected from eq. (4.10) the values for |∆Γs cos φs| found from eqs. (4.16) and (4.18)

are roughly equal to ∆Γs in eq. (4.16). The quoted results in eqs. (4.17) and (4.18) assume

that the signs of cos δ1 and cos δ2 agree with the results found with naive factorisation.

With this assumption the other two solutions for φs (which have opposite signs to those in

eqs. (4.17) and (4.18)) are excluded. Strategies to check this theoretical input are discussed

in [44].

The semileptonic CP asymmetry as
sl ≡ as

fs in the Bs system has been determined

directly in [51] and was found to be

as,direct
sl =

(
24.5 ± 19.3(stat) ± 3.5(syst)

)
· 10−3 . (4.19)

Moreover the semileptonic CP asymmetry can be extracted from the same sign dimuon

asymmetry that was measured in [52] as

asl =
(
−2.8 ± 1.3(stat) ± 0.9(syst)

)
· 10−3 (4.20)

in a data sample containing both Bd and Bs mesons. While the composition of the sample

is known, no determination of the initial state on an event-by-event basis was possible.

Updating the numbers in [53, 14] one sees that the measurement in eq. (4.20) determines

the combination

asl = (0.582 ± 0.030) ad
sl + (0.418 ± 0.047) as

sl. (4.21)

In [53, 14] the experimental bound for ad
sl from B factories was used to extract a bound on

as
sl from eq. (4.20) and eq. (4.21). The huge experimental uncertainty in ad

sl then inflicts a

large error on the value of as
sl inferred from eqs. (4.20) and (4.21).

Here we pursue a different strategy and use the much more precise theoretical Standard

Model value for ad
sl in eq. (3.39). In the search for new physics this is permissible: if the

resulting constraint on ∆s departs from the Standard Model value ∆s = 1, this will then

imply new physics in either as
sl or ad

sl. Moreover, the current precision in the unitarity

triangle already substantially limits the room for new physics in ad
sl [2].

Using ad
sl = −

(
0.48

+0.10
−0.12

)
· 10−3 of eq. (3.39) and further eqs. (4.20) and (4.21) we

obtain the nice bound

as,dimuon
sl =

(
−6.0 ± 3.2(stat) ± 2.2(syst)

)
· 10−3 . (4.22)
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Figure 7: Current experimental bounds in the complex ∆s-plane. The bound from ∆Ms is given

by the red (dark-grey) annulus around the origin. The bound from |∆Γs|/∆Ms is given by the

yellow (light-grey) region and the bound from as
fs is given by the light-blue (grey) region. The angle

φ∆
s can be extracted from |∆Γs| (solid lines) with a four-fold ambiguity — each of the four regions

is bounded by a solid ray and the x-axis — or from the angular analysis in Bs → J/Ψφ (dashed

line). This constraint also has a four-fold ambiguity if no assumptions on the strong phases δ1 and

δ2 are made. The dashed lines limit the region corresponding to the solution in eq. (4.17). The

Standard Model case corresponds to ∆s = 1. The current experimental situation shows a small

deviation, which may become significant, if the experimental uncertainties in ∆Γs, as
sl and φs will

go down in near future.

Combining this number with the one from the direct determination [51] in eq. (4.19) we

get our final experimental number for the semileptonic CP asymmetry:

as
sl =

(
−5.2 ± 3.2(stat) ± 2.2(syst)

)
· 10−3 . (4.23)

Adding statistical and systematic error in quadrature gives

as
sl = (−5.2 ± 3.9) · 10−3 . (4.24)

In figure (7) we display all bounds in the complex ∆s-plane including all experimental and

theoretical uncertainties.

The combined analysis of ∆Ms, φs, |∆Γs|/∆Ms and as
sl in figure 7 shows some hints

for deviations from the Standard Model. To analyse them further we ignore discrete am-

biguities and focus on the solution in the fourth quadrant which is closest to the Standard

Model solution ∆s = 1. We further do not perform a complete statistical analysis with

proper inclusion of all correlations and for simplicity add statistical and systematic errors
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in quadrature. First we note from eq. (4.2) that eq. (1.7) implies

|∆s| = 0.92 ± 0.32(th) ± 0.01(exp) (4.25)

while eqs. (4.4) and (4.17) lead to

cos φs

|∆s|
= 1.93 ± 0.37(th) ± 1.1(exp). (4.26)

eqs. (4.25) and (4.26) are consistent with ∆s = 1, but prefer |∆s| < 1.

Second we observe that both the angular distribution in
( )

Bs → J/ψφ giving eq. (4.18)

and as
sl in eq. (4.24) point towards a non-zero φs. Both analyses involve sin φs, the two

values inferred are

sin φs = −0.71
+0.48
−0.27 from the angular analysis, eq. (4.18), (4.27)

sin φs

|∆s|
= −1.05 ± 0.20(th) ± 0.78(exp) from asl in eq. (4.24). (4.28)

In eq. (4.28) we have profited from our improved theory prediction in eq. (4.5). For |∆s| = 1

the two numbers combine to

sin φs = −0.77 ± 0.04(th) ± 0.34(exp). (4.29)

Relaxing |∆s| to its minimal value allowed by eq. (4.25), |∆s| = 0.59, changes this result

to

sin φs = −0.67 ± 0.05(th) ± 0.29(exp). (4.30)

Either eq. (4.29) or eq. (4.30) alone imply a deviation from φs = 0 by 2.1σ, but ∆Γs in

eq. (4.18) pulls in the opposite direction, preferring large values of | cos φs| through eq. (4.3).

Despite of its large error ∆Γs already gives a powerful lower bound | cos φs| ≥ 0.55 (so that

| sin φs| ≤ 0.84) at the 1σ level because of its large central value in eq. (4.18). This can

be clearly seen from figure 7. However, ∆Γs is consistent with cos φs = 0 at the 1.8σ level

and clearly has no impact on the small φs region, which is the relevant region to assess the

significance of eq. (4.29) in the search for new physics.

In conclusion we find that the data are best fit for φs around −0.88 corresponding

to sin φs = −0.77, if |∆s| = 1. The constraint from |∆Γs| is less compelling, but slightly

prefers |∆s| < 0 and disfavours too large values of | sin φs|. The discrepancy between data

and the Standard Model is around 2σ, which is not statistically significant yet. If our

results are used to constrain models of new physics one should bear in mind that we have

only discussed the solution in the fourth quadrant of the complex ∆s plane here.

5. A road map for Bs−Bs mixing

Clearly the best way to establish new physics from Bs−Bs mixing is a combination of

all observables following the line of section 4.2. In particular it has to be stressed that
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Amix
CP (Bs → (J/ψφ)CP±) and as

fs are not substitutes for each other, but rather give com-

plementary information on the complex ∆s plane because of their different dependence on

|M s
12|. With the new operator basis presented in this paper it will be possible to deter-

mine ∆s solely from measurements which involve hadronic quantities only in numerically

sub-dominant terms. To this end any experimental progress on |∆Γs|, as
fs, the angular

distributions of both untagged and tagged Bs → J/ψφ decays (with the tagged analysis

giving access to Amix
CP (Bs → (J/ψφ)CP±)) and possibly of other b → ccs decays of the Bs

meson is highly desirable. Regardless of whether sin φs turns out to be zero or not it is

important to measure the sign of ∆Γs. Methods for this are discussed in [44]. Probably the

most promising way to determine sign ∆Γs = sign cos(φs) is the study of Bs → J/ψK+K−

with a scan of the invariant mass of the (K+,K−) pair around the φ peak to determine

sign cos δ1,2.

Clearly the analysis of the precise measurement of ∆Ms needs a better determination

of f2
Bs

B. Since any new physics discovery from a quantity involving lattice QCD will be

met with scepticism by the scientific community, the lattice collaborations might want to

consider to switch to blind analyses in the future. The predictions of both ∆Γs/∆Ms and

as
fs involve the ratio B̃′

S/B in a numerically sub-dominant term. It may be worthwhile to

address this ratio directly in lattice computations, because some systematic effects could

drop out from the ratio of the two matrix elements.

The quantities discussed in this paper will also profit from higher-order calculations of

the short-distance QCD parts. In particular corrections of order αs/mb should be computed

to permit a meaningful use of 1/mb bag factors computed with lattice QCD or QCD sum

rules. A further reduction of the dependence on the renormalisation scale µ1 requires the

cumbersome calculation of O(α2
s) corrections. Finally, the reduction of the 1/mb corrections

with the help of our new operator basis can only be fully appreciated, if the size of the

1/m2
b terms is indeed small. We have estimated these corrections and indeed found no

unnatural enhancement over their natural size.

6. Summary

In this letter we have improved the theoretical accuracy of the mixing quantity Γq
12, q = d, s,

by summing the logarithmic terms αn
s z lnn z, z = m2

c/m
2
b to all orders n = 1, 2, . . . and

by introducing a new operator basis, which trades the traditionally used operator QS of

eq. (1.8) for Q̃S defined in eq. (2.7). In the new operator basis the coefficient of the 1/mb-

operator R0 is colour-suppressed. We have found that all previously noted pathologies in

the sizes of the 1/mb and αs corrections were artifacts of the old operator basis. Still, one

could achieve the same accuracy with the use of the old basis, if one i) used the coefficients

with resummed ln z terms, ii) added the term of order Ncαs/mb which drops from the

NLO results of [19 – 21] when Q̃S is eliminated for R0 and iii) fully takes the numerical

correlation between B and BS into account. This numerical correlation stems from the

smallness of the matrix element 〈Q̃S〉. It is most easily implemented by expressing either

B or BS in terms of B̃S, which is essentially equivalent to our approach.
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Our improvements are most relevant for Re Γq
12/M

q
12, which enters both ∆Γq/∆Mq

and new physics scenarios of as
fs. In particular, hadronic quantities now appear in these

quantities in numerically sub-dominant terms only. We have then discussed how exper-

imental information on |∆Γs|, as
fs, φs from the angular distribution of

( )

Bs → J/ψφ and

Amix
CP (Bs → (J/ψφ)CP±) can be efficiently combined to constrain the complex parameter

∆s, which quantifies new physics in Bs−Bs mixing.

Armed with our more precise formulae we have analysed the combined impact of the

DØ analyses of the dimuon asymmetry and of the angular distribution in the decay
( )

Bs →
J/ψφ. Here we have assumed that φd is free of new physics contributions. This is plausible

in view of the constraints on φd from global fits to the unitarity triangle [2]. Scanning

conservatively over theory uncertainties, we find that φs deviates from its Standard Model

value by 2 standard deviations.
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